

Persist additional attributes for a relationship

www.thoughts-on-java.org

1. Model relationship table as an entity

2. Use a @Embeddable class as primary key
Create a class for the primary key and annotate it with @Embeddable
so that you can use it as a @EmbeddedId. Define a mapping for the
two foreign key columns.

Make sure to implement the equals and hashCode methods.

@Embeddable

public static class BookPublisherId implements Serializable {

 @Column(name = "fk_book")

 protected Long bookId;

 @Column(name = "fk_publisher")

 protected Long publisherId;

http://www.thoughts-on-java.org/

Persist additional attributes for a relationship

www.thoughts-on-java.org

3. Define the relationship entity mapping
Use the embeddable class as the primary key.

Map the relationships to the related entities and set insertable and
updatable to false.

@Entity

public class BookPublisher {

 @EmbeddedId

 private BookPublisherId id;

 @ManyToOne

 @JoinColumn(name = "fk_book",

insertable = false, updatable = false)

 private Book book;

 @ManyToOne

 @JoinColumn(name = "fk_publisher",

insertable = false, updatable = false)

 private Publisher publisher;

 @Column

 @Enumerated(EnumType.STRING)

 private Format format;

http://www.thoughts-on-java.org/

Persist additional attributes for a relationship

www.thoughts-on-java.org

4. Initialize primary key and relationships in
constructor

Implement a constructor that initializes all attributes and the
relationships.

@Entity

public class BookPublisher {

 public BookPublisher(Book b, Publisher p, Format f) {

 // create primary key

 this.id = new BookPublisherId(b.getId(), p.getId());

 // initialize attributes

 this.book = b;

 this.publisher = p;

 this.format = f;

 // update relationships to assure referential integrity

 p.getBooks().add(this);

 b.getPublishers().add(this);

 }

http://www.thoughts-on-java.org/

